High-Orders Motion Analysis

Computer Vision Methods
de

Éditeur :

Springer

Paru le : 2024-02-23

This book shows how different types of motion can be disambiguated into their components in a richer way than that currently possible in computer vision. Previous research of motion analysis has generally not yet considered the basic nature of higher orders of motion such as acceleration. Hence, th...
Voir tout
Ce livre est accessible aux handicaps Voir les informations d'accessibilité
Ebook téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Compatible lecture en ligne (streaming)
147,69
Ajouter à ma liste d'envies
Téléchargement immédiat
Dès validation de votre commande
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

À propos

Auteur

Éditeur

Collection
n.c

Parution
2024-02-23

Pages
85 pages

EAN papier
9789819991907

Auteur(s) du livre


Yan Sun is an assistant professor in the School of Computer Engineering and Science, Shanghai University, China. She obtained her Ph.D. degree in 2018 from the University of Southampton, UK, under the supervision of Professor Mark Nixon and Professor Jonathon Hare. She received Shanghai Pujiang Program in 2020. She has managed 1 National Natural Science Foundation Project in 2021 and participated in National High-tech Programs and MIIT Special Program for Ships as a key researcher. She has hosted the IEEE-WIE at the 15th Chinese Conference on Biometrics Recognition. Her research interests mainly focus on computer vision, image processing, analyzing different types of motion in videos, including gait analysis, action recognition, object tracking, etc. Currently, she has published nearly 20 peer-reviewed articles in top journals and conferences, including Pattern Recognition and other top journals and conferences.

Caractéristiques détaillées - droits

EAN PDF
9789819991914
Prix
147,69 €
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
5345 Ko
EAN EPUB
9789819991914
Prix
147,69 €
Nombre pages copiables
0
Nombre pages imprimables
8
Taille du fichier
64256 Ko

Suggestions personnalisées